Exercise 8

The area of a triangle with sides of lengths a and b and contained angle θ is

$$
A=\frac{1}{2} a b \sin \theta
$$

(a) If $a=2 \mathrm{~cm}, b=3 \mathrm{~cm}$, and θ increases at a rate of $0.2 \mathrm{rad} / \mathrm{min}$, how fast is the area increasing when $\theta=\pi / 3$?
(b) If $a=2 \mathrm{~cm}, b$ increases at a rate of $1.5 \mathrm{~cm} / \mathrm{min}$, and θ increases at a rate of $0.2 \mathrm{rad} / \mathrm{min}$, how fast is the area increasing when $b=3 \mathrm{~cm}$ and $\theta=\pi / 3$?
(c) If a increases at a rate of $2.5 \mathrm{~cm} / \mathrm{min}, b$ increases at a rate of $1.5 \mathrm{~cm} / \mathrm{min}$, and θ increases at a rate of $0.2 \mathrm{rad} / \mathrm{min}$, how fast is the area increasing when $a=2 \mathrm{~cm}, b=3 \mathrm{~cm}$, and $\theta=\pi / 3$?

Solution

Part (a)

In this case, a and b are constant: $a=2 \mathrm{~cm}, b=3 \mathrm{~cm}$. Differentiate both sides of the formula for area with respect to t.

$$
\begin{aligned}
\frac{d}{d t}(A) & =\frac{d}{d t}\left(\frac{1}{2} a b \sin \theta\right) \\
\frac{d A}{d t} & =\frac{1}{2} a b \frac{d}{d t}(\sin \theta) \\
\frac{d A}{d t} & =\frac{1}{2} a b(\cos \theta) \cdot \frac{d \theta}{d t}
\end{aligned}
$$

θ increases at a rate of $0.2 \mathrm{rad} / \mathrm{min}$, so $d \theta / d t=0.2 \mathrm{rad} / \mathrm{min}$. Therefore, when $\theta=\pi / 3$, the rate that the area increases is

$$
\left.\frac{d A}{d t}\right|_{\theta=\pi / 3}=\frac{1}{2}(2 \mathrm{~cm})(3 \mathrm{~cm})\left(\cos \frac{\pi}{3}\right) \cdot\left(0.2 \frac{\mathrm{rad}}{\mathrm{~min}}\right)=0.3 \frac{\mathrm{~cm}^{2}}{\mathrm{~min}} .
$$

Part (b)
In this case, only a is constant: $a=2 \mathrm{~cm}$. Differentiate both sides of the formula for area with respect to t.

$$
\begin{aligned}
\frac{d}{d t}(A) & =\frac{d}{d t}\left(\frac{1}{2} a b \sin \theta\right) \\
\frac{d A}{d t} & =\frac{1}{2} a \frac{d}{d t}(b \sin \theta) \\
\frac{d A}{d t} & =\frac{1}{2} a\left\{\left[\frac{d}{d t}(b)\right] \sin \theta+b\left[\frac{d}{d t}(\sin \theta)\right]\right\} \\
\frac{d A}{d t} & =\frac{1}{2} a\left\{\left[(1) \cdot \frac{d b}{d t}\right] \sin \theta+b\left[(\cos \theta) \cdot \frac{d \theta}{d t}\right]\right\}
\end{aligned}
$$

The rate of change for area is then

$$
\frac{d A}{d t}=\frac{1}{2} a\left(\frac{d b}{d t} \sin \theta+b \cos \theta \frac{d \theta}{d t}\right) .
$$

b increases at a rate of $1.5 \mathrm{~cm} / \mathrm{min}$, so $d b / d t=1.5 \mathrm{~cm} / \mathrm{min} . \theta$ increases at a rate of $0.2 \mathrm{rad} / \mathrm{min}$, so $d \theta / d t=0.2 \mathrm{rad} / \mathrm{min}$. Therefore, when $b=3 \mathrm{~cm}$ and $\theta=\pi / 3$, the rate that the area increases is

$$
\begin{aligned}
\left.\frac{d A}{d t}\right|_{\substack{b=3 / 3}} & =\frac{1}{2}(2 \mathrm{~cm})\left[\left(1.5 \frac{\mathrm{~cm}}{\min }\right) \sin \frac{\pi}{3}+(3 \mathrm{~cm})\left(\cos \frac{\pi}{3}\right)\left(0.2 \frac{\mathrm{rad}}{\min }\right)\right] \\
& =\left(\frac{3}{2} \cdot \frac{\sqrt{3}}{2}+3 \cdot \frac{1}{2} \cdot \frac{1}{5}\right) \frac{\mathrm{cm}^{2}}{\min } \\
& =\frac{15 \sqrt{3}+6}{20} \frac{\mathrm{~cm}^{2}}{\min }
\end{aligned}
$$

Part (c)

Differentiate both sides of the formula for area with respect to t.

$$
\begin{aligned}
\frac{d}{d t}(A) & =\frac{d}{d t}\left(\frac{1}{2} a b \sin \theta\right) \\
\frac{d A}{d t} & =\frac{1}{2} \frac{d}{d t}(a b \sin \theta) \\
\frac{d A}{d t} & =\frac{1}{2}\left\{\left[\frac{d}{d t}(a)\right] b \sin \theta+a\left[\frac{d}{d t}(b)\right] \sin \theta+a b\left[\frac{d}{d t}(\sin \theta)\right]\right\} \\
\frac{d A}{d t} & =\frac{1}{2}\left[\frac{d a}{d t} b \sin \theta+a \frac{d b}{d t} \sin \theta+a b(\cos \theta) \cdot \frac{d \theta}{d t}\right]
\end{aligned}
$$

a increases at a rate of $2.5 \mathrm{~cm} / \mathrm{min}$, so $d a / d t=2.5 \mathrm{~cm} / \mathrm{min} . b$ increases at a rate of $1.5 \mathrm{~cm} / \mathrm{min}$, so $d b / d t=1.5 \mathrm{~cm} / \mathrm{min}$. θ increases at a rate of $0.2 \mathrm{rad} / \mathrm{min}$, so $d \theta / d t=0.2 \mathrm{rad} / \mathrm{min}$. Therefore, when $a=2 \mathrm{~cm}$ and $b=3 \mathrm{~cm}$ and $\theta=\pi / 3$, the rate that the area increases is

$$
\begin{aligned}
\left.\frac{d A}{d t}\right|_{\substack{a=2 \\
b=3 \\
\theta=\pi / 3}} & =\frac{1}{2}\left[\left(2.5 \frac{\mathrm{~cm}}{\min }\right)(3 \mathrm{~cm}) \sin \frac{\pi}{3}+(2 \mathrm{~cm})\left(1.5 \frac{\mathrm{~cm}}{\min }\right) \sin \frac{\pi}{3}+(2 \mathrm{~cm})(3 \mathrm{~cm})\left(\cos \frac{\pi}{3}\right) \cdot\left(0.2 \frac{\mathrm{rad}}{\min }\right)\right] \\
& =\frac{1}{2}\left(\frac{5}{2} \cdot 3 \cdot \frac{\sqrt{3}}{2}+2 \cdot \frac{3}{2} \cdot \frac{\sqrt{3}}{2}+2 \cdot 3 \cdot \frac{1}{2} \cdot \frac{1}{5}\right) \frac{\mathrm{cm}^{2}}{\min } \\
& =\frac{1}{2}\left(\frac{3}{5}+\frac{21 \sqrt{3}}{4}\right) \frac{\mathrm{cm}^{2}}{\min } .
\end{aligned}
$$

